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Abstract

The finite element dynamic model of a honeycomb sandwich plate is presented using different mesh division for the

surface plates and the sandwich plate to accurately express the crack damage status of the plate. The experimental

measurements of plate natural frequency and dynamic responses are carried out for dynamic model verification. The

feasibility of detecting small crack damage according to structural natural frequency and dynamic responses is eval-

uated. The results show that the energy spectrum of the decomposed wavelet signals of dynamic responses has a higher

sensitivity to small crack damage, and more high order modes should be included in the dynamic model for structural

damage detection.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

For a long time, great attention has been paid to researches on structural damage detection using

structural vibration characteristics. Even for a complex engineering structure in practice, its natural

frequencies and dynamic responses at few measured spots can be easily acquired, this fact gives a
potential feasibility for the realization of online damage detection and health monitoring of various

in-service structures (Farrar et al., 2001). The structural natural frequencies were the earliest used

parameters for structural damage detection. Collins et al. (1992) computed the frequency spectra and

studied the effects of crack location on longitudinal vibrations of a cantilevered bar with a transverse

crack. Nandwana and Maiti (1997) added a rotational spring to a slender beam for crack simulation in
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order to check the feasibility of detecting crack location based on the measurement of natural frequencies,

and pointed out that when the internal crack depth is more than 20% of the section depth, the detec-

tion performance was satisfactory. Ramamurti and Neogy (1998) considered the feasibility of using

natural frequency as a criterion for damage detection, and concluded that natural frequency does not
appear to be an appropriate criterion for integrity analysis in a simplified model. Salawu (1997) reviewed

plentiful literatures about structural damage detection using the natural frequency and discussed

the possible limit factors for successful application of vibration monitoring to damage detection and

structural assessment. Many researches on structural damage detection using the online measured

structural vibration responses have also been carried out (Zou et al., 2000). Hou et al. (2000) used

the characteristics of the wavelet transformation of simulated vibration response signals generated from

a simple structural model subjected to a harmonic excitation. They showed a great promise of the

wavelet approach for damage detection and structural health monitoring. Zhang et al. (1999) adopted
vibration measurements to detect structural damage using Transmittance Function Monitoring, and the

parameters used for damage detection were computed from different types of measured structural

responses.

Although the two above-mentioned methods are simple and easy to execute, there are still many

problems in the realization of damage detection for practical engineering structures. Because a small

quantity of structural information is adopted, it is difficult to detect a practical complex structural damage

status, such as determination of damage location, damage category and extent as well as some small

structural damage. Therefore, some researchers adopted more structural information in structural damage
detection, for example, mode shapes (Kosmatka and Ricles, 1999; Hu et al., 2001), modal strain energy

(Doebling et al., 1997; Chen et al., 2000), etc. However, these methods require a large amount of measured

data or numerical simulation using an accurate structural dynamic model. This is not advantageous for

online damage detection of an in-service structure.

Identifying damage status from global dynamic behaviors of a structure is essentially an inverse problem

of structural dynamic analysis. The issues to be solved include identification of structural damage category,

extent and location. Because practical engineering problems are generally very complex, structural damage

detection using vibration method is always conducted in two steps, one is to determine if damage has
occurred, the other is to identify the category, extent and location of structural damage. Many researchers

have adopted some simple structural model, such as a beam, to study damage detection, but for complex

engineering structures some conclusions may not be the same.

Honeycomb sandwich composite plates have been widely applied to aeronautical structures as well as

building, automobile and train structures because it possesses many advantages, such as lighter weight,

higher stiffness, heat insulation and preservation, and anti-radialization (the structure can resist the radi-

alization from electromagnetic wave or infrared ray when structural material is mixed by some material

that can absorb electromagnetic wave or infrared ray). This kind of structural materials are made of very
thin aluminum alloy, FRP (fiberglass-reinforced plastics), PVC and CFRBP (ceramic fiber round braided

rope), etc. One of its most excellent properties is the lightweight, and its weight is only 10–15% of that of a

solid structure with the same material. However, the ability of resisting impact of a honeycomb sandwich

plate is very poor, so crack or unglued damage occurs frequently. This will seriously affect the function of

the structural components, such as the propeller of a helicopter, aerofoil and sealed-cabin. Obviously, the

study of in-service damage detection for honeycomb sandwich structures possesses significant application

values.

This paper aims at evaluating feasibility of structural crack damage detection using vibration parame-
ters. A more accurate finite element dynamic model of a honeycomb sandwich plate, which is closer to some

practical engineering structures, is established. Its natural vibration traits and response characteristics are

checked by experimental measurements. Various possible influences of crack damage status on structural

natural frequency and responses are discussed.
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2. Dynamic finite element model of a sandwich plate with crack damage

When a crack exists in a honeycomb sandwich plate (as shown in Fig. 1), it can be described using five

parameters: depth d, length l, directional angle a and location coordinates xc and yc. Assume that only very
narrow crack is considered, the crack width can be approximately taken as zero. A crack damage status can

be expressed as
g ¼ gðxc; yc; l; d; aÞ ð1Þ
Crack damage in a sandwich plate will lead to a structural stiffness reduction of the local area as well as

the whole structure. Therefore, structures with different location and extent of crack will exhibit different

dynamic features. In the finite element model established for this study, the crack parameters including
location, length and directional angle are expressed using the nodal coordinates of two adjacent eight nodes

quadrangular elements I and II as shown in Fig. 2(a). According to different size and shape of the two

elements, various cracks can be simulated.
Fig. 1. Crack damage in a honeycomb sandwich plate.

Fig. 2. Element division of a honeycomb sandwich plate with crack damage.
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Assume that the crack depth reaches the inside of sandwich ply of the plate. In the present study, a kind

of sandwich ply made of stiffened plate is studied. In order to deal with the crack depth, the top and bottom

plates, and the stiffened plate are independently divided into quadrangular elements as shown in Fig. 2(b),

and the different vertical dimension of the two adjacent quadrangular elements III and IV can represent the
variation of the crack depth.

Assume that the top and bottom surfaces, and all the stiffened plates are isotropic thin plates and

subjected to a small elastic bending distortion. Three types of mid-plane coordinates: otxtytzt; obxbybzb and
oixiyizi, are used respectively for these three parts. Displacements in x-, y- and z-directions can be expressed
respectively as
ut ¼ �zthtx; vt ¼ �zthty ; wt ¼ wtðxt; ytÞ;
ub ¼ �zbhbx; vb ¼ �zbhby ; wb ¼ wbðxb; ybÞ;
ui ¼ �yihix; vi ¼ viðxi; ziÞ; wi ¼ �yihiz:

9=; ð2Þ
At the common nodes of the top and stiffened plates or the bottom and stiffened plates, the continuous

conditions of the displacement give wt ¼ wi, ut ¼ ui, and vt ¼ vi or wb ¼ wi, ub ¼ ui and vb ¼ vi. Strains in
these three parts can be expressed as
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An arbitrary quadrangular element in a Cartesian coordinate system can be transformed into a rect-

angular element using a set of the following transform
x
y

� �
¼ f

n
g

� �
: ð6Þ
Assume that the nodal coordinate of an arbitrary quadrangular element is ðxj; yjÞ; j ¼ 1; 2; . . . ; 8, and the
element shape function is Njðn; gÞ; j ¼ 1; 2; . . . ; 8, then Eq. (6) can be expressed as
x ¼
X8
j¼1

Njðn; gÞxj; y ¼
X8
j¼1

Njðn; gÞyj: ð7Þ
The displacements in Eq. (2) can be written as
wt ¼
X8
j¼1

Njwtj; htx ¼
X8
j¼1
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X8
j¼1

Njhtyj; ð8Þ
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where the element shape function Njðn; gÞ is as follows
Njðn; gÞ ¼ ð1þ nnjÞð1þ ggjÞðnnj þ ggj � 1Þn2jg2j=4þ ð1� n2Þð1þ ggjÞð1� n2j Þg2j=2
þ ð1� g2Þð1þ nnjÞð1� g2j Þn

2
j=2; j ¼ 1; 2; . . . ; 8: ð11Þ
The displacement vector at the jth node for bending deformation of a thin plate can be written as
fdj
tg ¼ ½wtj; htxj; htyj	T; fdj

bg ¼ ½wbj; hbxj; hbyj	T; fdj
ig ¼ ½hizj; hixjvij	T: ð12Þ
For the top plate, using the regular procedures of FEM (Huebner, 2001), one can obtain the equation of

motion of an element as follows
½M e	24
24f €d
eg24
1 þ ½Ke	24
24fd

eg24
1 ¼ fF eg24
1; ð13Þ

where ½M e	, ½Ke	 and fF eg are element mass matrixes, stiffness matrix and nodal force vector, respectively.
f €deg and fdeg are nodal acceleration and displacement vectors, respectively. Hereinto,
½M e	24
24 ¼
Z 1

�1

Z 1

�1
GTPGjJjdndg; ½Ke	24
24 ¼

Z 1

�1

Z 1

�1
BTDBjJjdndg; ð14Þ
where the Jacobi determinant jJj, elastic matrix D and mass density matrix P are as follows:
jJj ¼
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where E, l and q are the elastic modulus, Poisson’s ratio and mass density of the structural material,
respectively, and h is the plate thickness. In Eq. (14), the strain matrix B and velocity matrix G are as
follows:
B ¼ ½ðB1Þ3
3; ðB2Þ3
3; . . . ; ðB8Þ3
3	;

G ¼ ½ðG1Þ3
3; ðG2Þ3
3; . . . ; ðG8Þ3
3	;

)
ð16Þ
where
Bj ¼
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264
375; Gj ¼

�Nj 0 0
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24 35; j ¼ 1; 2; . . . ; 8: ð17Þ
Similar procedures can be used to establish the element equations of motion of the bottom and stiffened

plates. Assembling all element equations of motion of the three kinds of plates, one can obtain the fol-

lowing equation of motion of the whole honeycomb sandwich plate without considering damping:
M€D þ KD ¼ F; ð18Þ

whereM, K and F are the global mass matrix, stiffness matrix of the structure and the external force vector,

respectively. €D and D are the global nodal acceleration and displacement vectors, respectively. Assume that
the structure has proportional damping as follows:
C ¼ aMþ bK; ð19Þ

where C is the global damping matrix, and a and b are the proportional damping coefficients. To execute
modal transform to Eq. (19) using the normalized modal matrix U, one can get
UTCU ¼ UTðaMþ bKÞU ) 2fixi ¼ a þ bx2i ði ¼ 1; 2; . . . ; nÞ;
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where xi and fi are the ith natural frequency and modal damping ratio, respectively. For arbitrary i 6¼ j, the
a and b can be solved using following equation:
a þ bx2i ¼ 21ixi;

a þ bx2j ¼ 21jxj;

)
) a ¼ 21ixi � 2x2i ð1jxj � 1ixiÞ=ðx2j � x2i Þ;

b ¼ 2ð1jxj � 1ixiÞ=ðx2j � x2i Þ:

�

Though modal damping ratio fi and fj may have some difference for different modes, they mainly depend
on structural material property. Generally, steel fi � 0:005, concrete fi � 0:08, felt or cork fi � 0:06, nat-
ural rubber fi � 0:05, etc. Supposing that 1i � 1j ¼ 1, one can get the approximate formula as follows
a � 21xi½1� xi=ðxi þ xjÞ	;

b � 21=ðxj þ xiÞ:

)
ð20Þ
Combining Eqs. (18) and (19), the structural equations of motion can be expressed as
M€D þ C _D þ KD ¼ F: ð21Þ
3. Vibration-based structural damage feature index

When some crack occurs in a honeycomb sandwich plate, the plate natural frequency, modal shapes,

frequency response functions and dynamic response properties, etc. will vary with the location and extent of

the cracks because of the variations of local structural stiffness. In order to emphatically evaluate the

influence of crack location and extent on the above-mentioned dynamic characteristics, the situation with

only one crack is considered in this paper.
For a honey comb sandwich plate with crack damage status g ¼ gða; c; l; d; aÞ, if the structural damping

is neglected and the external load equals zero, Eq. (21) can be written as
M€D þ KðgÞD ¼ 0: ð22Þ
Solving Eq. (22), one can get its eigenvalue xiðgÞ and mode vector UiðgÞ, which vary with crack damage
status g, and i ¼ 1; 2; . . . ; n, where n is the number of structural mode considered in this study.
Vibration responses at few spots of an in-service structure can be easily measured using the technology of

piezoelectric smart structures (Gobin et al., 2000). However, the raw response signal in time domain cannot

be used directly to identify structural damage quantitatively. Some representative indexes have to be se-

lected and constructed. Wavelet transform of response signals is one of the available methods. Wavelet

analysis of time-varying signal is a kind of localization analysis method in time and frequency domains, and

the time and frequency windows can both be changed. This signal processing method has higher frequency

and time resolution (Chui, 1997).

A continuous wavelet transform of a function f ðtÞ 2 L2ðRÞ is defined as
Wf ða; bÞ ¼
1ffiffiffiffiffiffi
jaj

p Z
R
f ðtÞW� t � b

a

� �
dt; ð23Þ
where b is the translation parameter, a is the scale parameter, f ðtÞ is the function (signal) to be transformed,
W�ðtÞ is the transforming function (mother wavelet), Wf is the calculated wavelet coefficients, which can be

used to recompose the original function f ðtÞ. The re-composition equation can be expressed as
f ðtÞ ¼ 1

CW

Z þ1

�1

Z þ1

�1

1

a2
Wf ða; bÞW

t � b
a

� �
dadb; ð24Þ
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where CW ¼
Rþ1
0

jbWðxÞj2
jxj dx < 1, and bWðxÞ is the Fourier transform of Mother Wavelet WðtÞ. The various

forms of mother wavelet WðtÞ have now been developed.
In practical application for wavelet transforms, especially in order to realize numerical simulation in

computer, the continuous wavelet must be changed into discrete form. One of the most usually used
discrete wavelet is Dyadic Wavelet (binary wavelet), i.e.
Wj;kðtÞ ¼ 2�j=2Wð2�jt � kÞ; j; k 2 Z: ð25Þ
Therefore, the discrete wavelet transforms and re-composing (invert wavelet transform) of a function f ðtÞ
can be written as
W2j f ðkÞ ¼ 2�j

Z
R
f ðtÞW�ð2�jt � kÞdt; ð26Þ

f ðtÞ ¼
X
j2Z

Z
W2j f ðkÞW2jð2�jt � kÞdk; ð27Þ
where W2j f ðkÞ denotes one variable, i.e. the wavelet transform of f ðtÞ.
The wavelet package analysis (WPA) is the most useful method of wavelet transform. It can adaptively

choose the corresponding frequency bandwidth according to the characteristics of the signal to be analyzed,

so that the resolution in frequency and time domains can both be enhanced.

The WPA algorithm is as follows.

Let gnj ðtÞ 2 Un
j , then gnj ðtÞ can be expressed as
gnj ðtÞ ¼
X
l

dj;n
l unð2jt � lÞ; ð28Þ
where gnj ðtÞ is an arbitrary function in sub-space Un
j . unð2jt � lÞ is the orthogonal wavelet packet, and dj;n

l is

the decomposed wavelet packet coefficient. The WPA decomposed coefficient is calculated by equation as

follows
dj;2n
l ¼

P
k ak�2ld

jþ1;n
k ;

dj;2nþ1
l ¼

P
k bk�2ld

jþ1;n
k ;

�
ð29Þ
where ak�2l is the low-pass digital filter and bk�2l is the high-pass digital filter.
The WPA re-composing is to calculate fdjþ1;n

l g using fdj;2n
l g and fdj;2nþ1

l g, and equation as follows
djþ1;n
l ¼

X
k

½hl�2kdj;2n
k þ gl�2kd

j;2nþ1
k 	; ð30Þ
where hl�2k is the low-pass digital filter and hl�2k is the high-pass digital filter.
The theory of wavelet analysis is very profuse, and the interested researcher can refer to references

(Mallat, 1999; Strang and Nguyen, 1996).

Energy of dynamic response of cracked structures compared with that of the intact structure in some
special frequency bands will exhibit some remarkable difference. This is because the structural damage will

suppress or enhance some components of response signal in special frequency bands, i.e., the structural

damage can cause energy increase of some response signal components or energy decrease of other response

signal components. Therefore, the energy of structural vibration response signals with different frequency

components contains ample information of structural damage, and the energy variation of one or several

frequency components of the signals can indicate a special status of structural damage.

In order to extract structural damage information from structural response signal, the signal is first

decomposed into multiple sub-signals in various frequency bands using WPA. Let S00ðtÞ denote the original
signal of structural response, it can be expressed as
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S00ðtÞ ¼
X2k�1
j¼1

SkjðtÞ; ð31Þ
where SkjðtÞ is the sub-signal with orthogonal frequency band and k indicates the layer number of the tree
structure of wavelet decomposition.

The energy of these sub-signals can be expressed as
Ukj ¼
Z

jSkjðtÞj2 dt: ð32Þ
A non-dimensional index vector can be composed using U 0kj and Ukjðj ¼ 0; 1; 2; . . . ; 2k�1Þ, i.e.
Vd ¼ fK1;K2; . . . ;K2k�1g; Kj ¼ 1�
Ukj

U 0kj
; j ¼ 1; 2; . . . ; 2k�1; ð33Þ
where U 0kj and Ukj are the sub-signal energy of the intact and crack damaged plates, respectively. Kj

indicates the magnitude variation of the jth order sub-signal energy, it is a measurement of the enhance-
ment or attenuation of the jth order sub-signal energy.
We also find that when different mother wavelet is adopted for decomposition of vibration response of

structure with damage, the obtained ‘‘the energy index’’ is quite different. In this study, we have attempted

to use several mother wavelets, and found the Daubechies wavelet (db5) has the better effect for indication
of structural damage. In numerical simulation, the wavelet analysis toolbox in the MATLAB software is

used, so that programme design can be greatly simplified.
4. Numerical simulation and experiment

The structural damage status, such as damaged locations, extents and categories, of a practical engi-

neering structure is related to a large amount of information and data. It is not reasonable to acquire such

information only using experiment or numerical simulation. Superfluous experimental work is time

consuming and not economical, and numerical simulation without experimental verification is unbeliev-

able. A more scientific way is to use a more accurate structural dynamic model checked by experiment
for numerical simulation to acquire a large amount of information and data related to structural damage

status.

The specimen of the numerical model is a honeycomb sandwich cracked plate as shown in Fig. 3, and it

has length L, width B and thickness h of 295, 98 and 8 mm, respectively. The plate is composed of PVC
materials, and its top surface has a thin aluminium raincoat. The plate weight is only 12.67% of a solid

structure with the same dimension and material. The PVC material parameters are E ¼ 3:5 GPa, l ¼ 0:34
and q ¼ 1:36 kg/m3.
L 
B 

h 

Fringe lognitudinal 
 

 

Fringe transverse crack
 

Inner transverse crack
 

Fig. 3. Specimen of a honeycomb sandwich plate with crack damage.
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The natural frequencies of an undamaged specimen of honeycomb sandwich plate are experimentally

measured to verify the reliability of the theoretical formula and programs. An experimental frequency

response curve is given in Fig. 4. The lowest 10 natural frequencies acquired by experiment and simulation

and the percentage errors between the results obtained using these two methods are listed in Table 1, which

shows that the errors are below 5%. This is an acceptable numerical precision in engineering problems. The

lowest 10 elastic mode shapes acquired by simulation are shown in Fig. 5.

Based on the dynamic model verified by the experiment, the natural frequencies of the honeycomb
sandwich plate for various crack damage status are numerically computed. When the crack width is ex-

tremely small and negligible, crack length will be the most important factor to affect structural dynamic
Table 1

Natural frequencies of the intact honeycomb sandwich plate obtained by experiment and numerical simulation

Order Numerical Experiment Errors

1 29.711 Hz 28.5 Hz 4.2%

2 50.900 Hz 52.5 Hz 3.0%

3 80.826 Hz 82 Hz 1.4%

4 106.99 Hz 108 Hz 1.0%

5 139.70 Hz 134 Hz 4.2%

6 162.70 Hz 158.5 Hz 2.6%

7 192.16 Hz 184 Hz 4.4%

8 212.43 Hz 208 Hz 2.1%

9 250.42 Hz 261.5 Hz 4.2%

10 277.07 Hz 287.5 Hz 3.6%
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Fig. 5. Elastic mode shapes of a plate with free boundary conditions.
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characteristics. Besides, crack directions also have influence on an anisotropic plate, and the crack location

in a plate also needs to be studied. First, the plate natural frequencies for damage status of different crack

length with longitudinal and transverse cracks (parallel and perpendicular to the stiffened plates, see Fig. 3)

are calculated, and they are listed in Table 2.
According to the analysis of data in Table 2, some conclusions can be drawn as follows:

(1) If a crack length is less than 5% of plate length or width, the natural frequencies nearly have no change

except for some particular mode, such as the 7th frequency in damage status of longitudinal inner

crack, i.e., crack away from the plate edges.

(2) If a crack length is less than 10% of plate length or width, some changes may occur in certain orders of

natural frequencies, such as the 6th and 7th frequencies in damage status of longitudinal and transverse

inner crack.
(3) If a crack length is longer than 20% of plate length or width, there will be remarkable changes in multi-

ple natural frequencies. However, a practical structure with such large crack may have already failed.

(4) Results show that changes in the natural frequency of a cracked plate do not always appear in the low-

est modal frequencies.

(5) For an anisotropic sandwich plate, the sensitivity of natural frequency to transverse crack is lower than

that to longitudinal crack.

In order to evaluate the influence of crack location on plate natural frequency, the natural frequencies
of the honeycomb sandwich plate with given crack length, crack direction and different locations in x- or
y-directions are calculated, and the results are shown in Fig. 6(a) and (b). The results show that the natural
frequencies rarely change with crack locations in the plate. This is because the given crack length is only

10% of plate length or width, and such a crack length is not large enough to be detected by structural

natural frequencies.
Table 2

Natural frequencies of the cracked honeycomb sandwich plate (Hz)

Natural frequency

order no.

1 2 3 4 5 6 7 8 9 10

Crack

category

Crack

length

Intact 0 29.711 50.900 80.826 106.99 139.70 162.70 192.16 212.43 250.42 277.07

Longitudinal

inner cracka
5% L 29.710 50.880 80.755 106.94 139.66 161.77 178.51 209.71 249.60 275.62

10% L 29.712 50.841 80.800 106.24 139.71 158.37 174.31 210.44 250.76 274.57

20% L 29.707 50.801 80.762 102.83 137.61 149.42 151.15 209.33 239.93 268.04

30% L 29.865 50.784 80.867 90.507 111.40 139.31 140.62 196.72 220.48 267.51

Longitudinal

edge crackb
5% L 29.710 50.883 80.827 106.97 139.66 162.12 190.47 211.19 249.76 277.72

10% L 29.713 50.599 80.809 100.37 100.34 146.06 146.57 201.17 237.80 264.23

20% L 29.716 49.682 72.518 80.868 93.41 145.67 146.55 202.32 239.64 263.81

30% L 29.658 30.890 52.306 80.863 91.29 144.48 137.09 155.19 223.34 254.45

Transverse

edge crackb
5% B 29.639 50.723 80.410 106.61 139.39 161.88 192.02 211.99 249.62 276.59

10% B 29.373 50.000 79.123 104.99 138.02 159.93 191.88 209.17 245.24 275.32

20% B 28.925 48.966 77.088 102.40 135.32 157.81 191.19 203.36 240.34 293.03

30% B 25.703 30.526 50.499 75.054 90.73 136.88 147.79 192.67 225.89 250.68

a Inner crack – crack from plate edge.
b Edge crack – crack starting from plate edge.
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As a summary, one can conclude that structural natural frequency is not suitable to detect crack damage

less than 10% of the plate dimension, even up to 20% of the total size of a plate-like structure. Besides, it is

very difficult to determine the location and severity of crack damage using natural frequencies.

In order to acquire the dynamic responses of a PVC honeycomb sandwich plate, two piezo-patches with
a size of 25 · 15 · 0.28 mm are bonded on the surface of the plate. One of them acts as an actuator and the
other acts as a sensor. The experimental set-up for acquisition of the dynamic responses of the plate with

different crack lengths is shown in Fig. 7. A square wave signal with 150 mV magnitude and 30 Hz

frequency generated by the signal generator TGA 1230 is fed into the TRek Model 700 Piezo-driver. The

30 V voltage signal from the output of the piezo-driver is exerted on the piezo-patch actuator. Dynamic

responses are measured using the piezo-patch sensor, and this signal is first fed into the B&K 2525 mea-

suring amplifier, which can amplify the signal and filter out the noise using the 3–3 kHz band-pass function.

Then, the output signal from the measuring amplifier is taken as the input of a computer with AD card for
data sampling and storage.

In the experimental study, the plates are put on a soft sponge so that the free-free boundary conditions

are simulated. Three honeycomb sandwich plates with different crack lengths of 3, 9 and 15 mm in lon-

gitudinal direction are studied, these crack lengths equal to 1%, 3%, and 5% of the plate length. Each

dynamic response signal of these plates is decomposed into the 5th layer ðk ¼ 5Þ of wavelet transform, and
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Fig. 6. Natural frequencies of a plate with different crack status.
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Fig. 6 (continued)

Fig. 7. Schematic diagram of experimental set-up for crack damage detection.
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Table 3

Crack damage index Vd (%) of a honeycomb sandwich plate

Crack 3 mm (1% L) 9 mm (3% L) 15 mm (5% L)

W.N E S Error (%) E S Error (%) E S Error (%)

0 0.001 0.0009 8.48 0.069 0.0742 7.53 0.131 0.1403 7.07

1 )0.306 )0.329 7.55 2.129 2.3219 9.06 4.269 4.6567 9.08

2 )0.357 )0.380 6.58 0.465 0.5019 7.93 1.761 1.8941 7.56

3 1.687 1.9166 13.6 )12.59 )13.22 5.00 )28.48 )29.73 4.36

4 0.316 0.3496 10.6 4.619 5.0826 10.0 )1.060 )1.130 6.68

5 0.001 0.0009 9.19 )15.06 )15.72 4.37 )32.04 )33.18 3.55

6 1.985 2.2752 14.6 )9.385 )9.914 5.64 )24.98 )26.39 5.64

7 )0.541 )0.588 8.61 0.856 0.9273 8.32 3.930 4.2732 8.73

8 0.863 0.9657 11.8 2.899 3.1819 9.75 4.799 5.2526 9.45

9 1.240 1.4015 13.0 )17.16 )17.78 3.57 )16.68 )17.70 6.13

10 1.767 2.0161 14.0 )8.499 )9.022 6.16 )26.65 )28.00 5.09

11 0.001 0.0011 9.92 1.403 1.5259 8.75 3.245 3.5154 8.33

12 4.275 4.9169 15.0 )2.849 )3.052 7.15 7.815 8.6011 10.0

13 )1.509 )1.674 11.1 )4.966 )5.298 6.69 7.725 8.4745 9.70

14 0.472 0.5253 11.2 2.504 2.7392 9.39 2.140 2.3112 8.00

15 1.212 1.3633 12.4 )18.59 )19.07 2.57 )45.71 )46.89 2.59

W.N: wavelet number, E: experimental, S: numerical simulation.
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16 wavelet sub-signals are obtained. The relative energy variations in these cases acquired using Eq. (33) are

listed in Table 3.

According to the data in Table 3, some hints of crack damage detection can be found as follows: (1)

When crack length is longer than 3% of the plate length, the largest element value of damage index vector

will be larger than 10%, and errors between experimental and numerical results do not exceed 10%. (2) The

larger the element value of the damage index vector, the smaller the errors between the experimental and

numerical results. Especially, the errors of those larger element values (larger than 10%) are usually less
than 5%. (3) When the crack length is shorter than 1% of the plate length, the element values of damage

index vector are smaller, and the errors between the experimental and numerical results are generally larger

than 10%. This indicates that these data are not reliable. The occurrence of so large errors for small crack

may be due to random errors in experiment and modal truncation in numerical simulation, and the latter

may be the main reason. This will be discussed in detail later.

Thus, one can conclude that if the largest element value of the damage index vector reaches 10%, some

crack damage in a honeycomb sandwich plate can be detected using the method proposed in this paper.

Describing complex damage status of a practical engineering structure requires a large amount of structural
dynamic response data, which can be acquired by numerical simulation using an experimentally checked

dynamic model.

In order to evaluate the ability of detecting crack extent using the method proposed in this paper, the

damage index vector for crack length from 1% to 10% of the plate length are obtained using numerical

simulation. The first three largest element values of each damage index vector are shown in Fig. 8. The

results show that the largest element values of the damage index vector have an increasing tendency with

the length of a crack, but the relation between them is not linear; if the largest element value reaching 10% is

taken as an indicator of discovering structural crack, the smallest detectable crack extent using the damage
index vector is about 2% of the structural length. Apparently, this method is more sensitive than using

structural natural frequencies.

A special phenomenon discovered in this study is that structural damage information is often contained

in some high order modes. Hence, the requirement for the established structural dynamic model for damage
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detection is different from that for active structural vibration control, for which only several low order
modes are usually considered. Structural damage detection requires more precise structural dynamic model,

i.e. more modes should be included in the dynamic model. Otherwise, some small structural damage may be

overlooked. Because only 20 modes are adopted in the dynamic model in this study, and the frequencies of

these modes are very close, this may be a reason for the discrepancy between experimental and numerical

results for small crack.
5. Conclusions

In this study, the ability of detecting crack damage in a honeycomb sandwich plate by using two types of

structural vibration parameters (natural frequency and dynamic response) have been evaluated, and the

feasibility of detecting small crack using method proposed in this study is also evaluated. We find that using

structural natural frequency may not be suitable for detecting crack damage less than 10%, even up to 20%
of the total size of a plate-like structure. Besides, it is very difficult to determine the location and category of

crack damage with such a dimension. However, energy spectrum of wavelet transform signals of structural

dynamic response has higher sensitivity to crack damage, it can exhibit structural damage status for a crack

length close to 2% of the dimension of a plate-like structure. We also found that structural damage

information is often contained in some high order modes of a structure, and more vibration modes should

be included in structural dynamic model for detection of small damage.
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